Novel chemical behaviour of a $[2,3]$ sigmatropic rearrangement product of 2-phenyltetrahydrothiopyranium 1-methylide

Satoshi Doi, Naohiro Shirai and Yoshiro Sato*
Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467, Japan

1,3,4,5,6,11a-Hexahydro-7E-2-benzothionine 5 , which is a $[2,3]$ sigmatropic rearrangement product of 2-phenyltetrahydrothiopyranium 1-methylide 8, has been synthesized by reaction of 1-methyl-2phenyltetrahydrothiopyranium triflate 3 with sodium amide in liquid ammonia or by the fluoride ioninduced desilylation of trans-2-phenyl-1-[(trimethylsilyl)methyl]tetrahydrothiopyranium perchlorate trans-7. Compound 5 is stable at room temperature and reverts to ylide 8 by ring-opening.

Introduction

Sommelet-Hauser rearrangement of α-aryl-substituted cyclic ammonium and sulfonium alkylides is useful for synthesizing medium-sized heterocyclic compounds by three-carbon ring enlargement. ${ }^{1}$ The reaction of 1,1-dimethyl-2-phenylpiperidinium iodide $\mathbf{1}$ with sodium amide in liquid ammonia gave 2-methyl-2,3,4,5,6,7-hexahydro-1 H -2-benzazonine 2 (83%) by ylide rearrangement (Scheme 1). ${ }^{2}$ However, similar treatment of

Scheme 1 Reagents and conditions: i, NaNH_{2}, liquid $\mathrm{NH}_{3}, 3 \mathrm{~h}$, in air; ii, NaNH_{2}, liquid $\mathrm{NH}_{3}, 3 \mathrm{~h}$, under N_{2}

1-methyl-2-phenyltetrahydrothiopyranium trifluoromethanesulfonate (triflate) 3 did not give the corresponding ringenlargement product 1,3,4,5,6,7-hexahydro-2-benzothionine 12, but rather gave 5 -methylsulfanyl-1-phenylpentan-1-one 4 (57\%).

The carbonyl oxygen of compound $\mathbf{4}$ should originate from air because the reagents and the solvent used do not have available oxygens. When the reaction was carried out under nitrogen, the product changed to $1,3,4,5,6,11 \mathrm{a}$-hexahydro- $7 E$ -2-benzothionine 5 (isotoluene compound, 62%). These results led us to question whether products $\mathbf{4}$ and $\mathbf{5}$ were formed from the same intermediate. Fluoride ion-induced desilylation of [(trimethylsilyl)methyl]-ammonium and -sulfonium salts is an excellent method for regioselective ylide formation. ${ }^{3,4}$ We report here the reaction of trans-2-phenyl-1-[(trimethylsilyl)methyl]tetrahydrothiopyranium perchlorate 7 with caesium fluoride.

Results and discussion

Treatment of 2-phenyltetrahydrothiopyran 6 with (trimethylsilyl)methyl triflate followed by sodium perchlorate gave 2-phenyl-1-[(trimethylsilyl)methyl]tetrahydrothiopyranium
perchlorate 7 as a single product, which was temporarily considered to have a trans configuration (Scheme 2).

The reaction of trans-7 with caesium fluoride at $0^{\circ} \mathrm{C}$ in DME under nitrogen gave a $75: 21: 4$ mixture of products 5 ([2,3] sigmatropic rearrangement product of ylide $\mathbf{8}$), $\mathbf{6}$ (demethylene product of 8) and (E)-methylsulfanyl-1-phenylpent-1-ene $\mathbf{1 1}$ (Hoffmann degradation product of ylide 8) in a total yield 54% after 3 h of stirring. However, the total yield decreased to 37% and the proportions changed to $55: 29: 14$ when the same reaction was quenched after 24 h of stirring (Scheme 2, Table 1, entries 1 and 2). The yield of compound $\mathbf{1 1}$ increased when the reaction was carried out at $25^{\circ} \mathrm{C}$, and compound 11 became the main product at $70^{\circ} \mathrm{C}$ (entries 3 and 4). Prolongation of the reaction time produced similar changes in the total yield and the product proportions in the reaction in DMSO, although appreciable amounts of compound 4 and 1,3,4,5,6,7-hexa-hydro-2-benzothionine 12 (Sommelet-Hauser rearrangement product) were formed (compare entries 9 and 10).

We previously reported that bicyclic isotoluene compounds, which are formed by $[2,3]$ sigmatropic rearrangement of ylides in non-basic media, are mostly stable at rt and are aromatized to Sommelet-Hauser rearrangement products by the aid of a strong base, e.g. in the presence of DBU or in a solution of potassium hydroxide in ethanol. ${ }^{4,5}$ When the reactions in entries 2,3 and 10 were repeated in the presence of DBU, the yield of compound $\mathbf{1 2}$ increased at $25^{\circ} \mathrm{C}$ with a decrease in that of compound 5, whereas there was little change at $0^{\circ} \mathrm{C}$ (compare entry 3 with 6,10 with 11 , and 2 with 5). These results show that compound 5 was fairly stable in basic media at lower temperature, and are consistent with the fact that compound $\mathbf{5}$ was not aromatized in a solution of sodium amide in liquid ammonia at $-40^{\circ} \mathrm{C}$.

When the reaction in DME was carried out in air, the amount of acyclic ketone $\mathbf{4}$ did not increase in the presence of DBU, while the product became a complex mixture in the absence of DBU (entries 7 and 8). Thus in the reaction of compound trans7 with caesium fluoride, there was little formation of ketone 4 and air did not appear to have any effect; that is, compound $\mathbf{4}$ was not formed from ylide 8 .

Prolongation of the reaction time decreased the total yields and changed the product proportions; the yields of compounds 6 and $\mathbf{1 1}$ increased and that of the isotoluene 5 decreased (compare entry 1 with 2 , and 9 with 10). When compound 5 was dissolved again in DME and the solution stirred at rt for 20 h , however, no appreciable changes were observed, while aromatization to compound $\mathbf{1 2}$ was completed after 72 h in the presence of DBU (Table 2, entries 1-3). In a DMSO solution, half of bicycle $\mathbf{5}$ was aromatized to compound $\mathbf{1 2}$ after 20 h in the absence of DBU (entry 4). Compounds $\mathbf{6}$ and $\mathbf{1 1}$ did not appear. On the other hand, when compound $\mathbf{5}$ was dissolved in

Table 1 Reaction of trans-2-phenyl-1-[(trimethylsilyl)methyl]tetrahydrothiopyranium perchlorate trans-7 with CsF

Entry	Reaction conditions					Total yield (\%)	Product proportions ${ }^{\text {a }}$				
	Solvent	Atmosphere	Additive	Temp. ($T^{\prime}{ }^{\circ} \mathrm{C}$)	Time (t/h)		4	5	6	11	12
1	DME	N_{2}		0	3	54	0	75	21	4	0
2	DME	N_{2}		0	24	37	2	55	29	14	0
3	DME	N_{2}		25	24	45	2	38	15	43	2
4	DME	N_{2}		70	24	85	0	0	<1	>98	<1
5	DME	N_{2}	DBU	0	24	41	6	59	13	13	9
6	DME	N_{2}	DBU	25	24	93	0	9	38	37	16
7	DME	Air		25	3			Com	lex	xture	
8	DME	Air	DBU	25	3	54	4	20	34	36	6
9	DMSO	N_{2}		25	3	67	0	67	0	28	5
10	DMSO	N_{2}		25	24	47	11	17	15	38	19
11	DMSO	N_{2}	DBU	25	24	77	1	0	24	25	50

${ }^{a}$ Proportions of the products were determined by integration of the ${ }^{1} \mathrm{H}$ signals at 400 MHz .
Table 2 Change in 1,3,4,5,6,11a-hexahydro-7E-2-benzothionine 5 at room temperature

Entry	Solvent	Base	Time (t / h)	Yield (\%)	Product proportions			
					5	6	11	12
1	DME		20	85	100	0	0	0
2	DME	DBU	20	93	35	0	0	65
3	DME	DBU	72	96	0	0	0	100
4	DMSO		20	83	44	0	0	56
5	EtOH	10\% KOH	20	77	0	30	51	19

Scheme 2 Reagents and conditions: i, $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{OTf}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NaClO}_{4}$; ii, CsF, DME or DMSO, $-40^{\circ} \mathrm{C}$, rt or $70^{\circ} \mathrm{C}, 3-24 \mathrm{~h}$; iii, NaNH , liquid $\mathrm{NH}_{3}, 3 \mathrm{~h}$
a solution of 10% potassium hydroxide in ethanol and the solution kept for 20 h , compounds $\mathbf{6}$ and $\mathbf{1 1}$ were competitively formed with aromatization to compound 12 (entry 4).

It is unlikely that compounds $\mathbf{6}$ and $\mathbf{1 1}$ were formed directly from compound 5 because the former is a demethylene product of ylide $\mathbf{8}$ and the latter is a Hofmann degradation product. This result suggests that ylide $\mathbf{8}$ was present in the solution. A solution of compound 5 and benzaldehyde in DME in a ratio of $1: 1$, when stored at rt for 20 h , gave a mixture of substrate 5 (45% recovery), compound 6 (49%) and 2-phenyloxirane 14 (47%) (Scheme 3). Compounds 6 and 14 are the products of the reaction of ylide $\mathbf{8}$ with benzaldehyde. ${ }^{6}$

A reverse reaction of bicycle 5 to ylide $\mathbf{8}$ occurs in competition with aromatization to compound $\mathbf{1 2}$, and may cause the
above mentioned decrease in the total yields and the change in product proportions with prolongation of the reaction time. The equilibrium between compounds 5 and $\mathbf{8}$ lies to the right in an ethanol solution due to the contribution of sulfonium ethoxide $\mathbf{3}^{\prime}$, and thus gave mainly compounds $\mathbf{6}$ and $\mathbf{1 1}$ rather than compound 12 (Schemes 2 and 3). Although the equilibrium almost lies to the left in DME, since no change occurred when compound 5 was dissolved in DME, the reaction of ylide $\mathbf{8}$ with benzaldehyde resulted in high yields of products 6 and 14.

Since the ratio of diaxial conformers $7(a)$ and $\mathbf{8}(a)$ to diequatorial conformers $7(e)$ and $\mathbf{8 (e)}$ may increase with an increase in temperature, the yield of acyclic compound $\mathbf{1 1}$ which is generated from ylide $\mathbf{8}(a)$ increases at higher temperature (Scheme 2). Benzylide $\mathbf{9}$ is initially formed in the reaction

Scheme 3 Reagents and conditions: i, PhCHO, DME, rt, 20 h
of compound 3 with sodium amide in liquid ammonia, and then comes into equilibrium with ylides $\mathbf{8}(a)$ and $\mathbf{8}(e) .^{7}$ In air, rapid oxidation of compound $\mathbf{9}$ with oxygen leads to ketone $\mathbf{4}$, whereas isomerization to ylide $\mathbf{8}$ becomes the main path under nitrogen. The relative energy of isomer $\mathbf{8}(e)$ is $3.2 \mathrm{kcal} \mathrm{mol}^{-1} \dagger$ lower than that of isomer $\mathbf{8}(a)$, and that for ylide $\mathbf{9}$ is 2.2 kcal mol^{-1} lower than that for ylide $8(e)$ based on calculations at the Becke3LYP/6-31G* level. ${ }^{8}$ These small differences in energy may allow the equilibrium among isomers $\mathbf{8}(a), 8(e)$ and 9 to occur.

Experimental

DME, DMSO and DBU were dried by distillation from CaH_{2} CsF was dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ at $180^{\circ} \mathrm{C}$ under reduced pressure. Distillation was performed on a Büchi Kugelrohr distillation apparatus. All mps (Yananco micro melting point apparatus) and bps (oven temperature) are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNM-A500, LA-400 or EX-270 spectrometer. J-Values are given in Hz. IR spectra were obtained on a Jasco FT-IR 5300 spectrometer, and UV-visible spectra were measured on a Shimadzu UV-240 spectrophotometer.

1-Methyl-2-phenyltetrahydrothiopyranium trifluoromethanesulfonate (triflate) 3

Methyl triflate ($7.80 \mathrm{~g}, 47.5 \mathrm{mmol}$) was added to a solution of 2-phenyltetrahydrothiopyran ${ }^{9} 6(5.84 \mathrm{~g}, 32.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(50 \mathrm{~cm}^{3}\right)$ at rt and the mixture was stirred for 3 h . The solvent was evaporated off under reduced pressure and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ to give the title salt $3(10.98 \mathrm{~g}, 95 \%), \mathrm{mp} 81-$ $82^{\circ} \mathrm{C}$ (Found: C, $45.3 ; \mathrm{H}, 5.0 . \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires C, $45.6 ; \mathrm{H}$, $5.0 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3023,2934,1424,1262,1163,1030$ and $639 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.89-2.19(4 \mathrm{H}, \mathrm{m}), 2.39-2.46$ $(2 \mathrm{H}, \mathrm{m}), 2.82(3 \mathrm{H}, \mathrm{s}), 3.78-3.90(2 \mathrm{H}, \mathrm{m}), 4.95(1 \mathrm{H}, \mathrm{dd}, J 2.44$ and 12.82) and 7.44-7.47 $(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ 22.6, 23.3, 23.9, 32.4, 40.8, 58.8, 128.3 (2 C), 129.9 (2 C), 130.4 and 133.0.

Reaction of salt 3 with $\mathbf{N a N H}_{\mathbf{2}}$ in liquid $\mathbf{N H}_{3}$

(A). Salt 3 ($690 \mathrm{mg}, 2.0 \mathrm{mmol}$) was added portionwise to a solution of NaNH_{2} [from Na metal ($70 \mathrm{mg}, 3.0 \mathrm{mmol}$)] in liquid $\mathrm{NH}_{3}\left(20 \mathrm{~cm}^{3}, \mathrm{NH}_{3}\right.$ vapour condensed in dry air), and the mixture was stirred for $3 \mathrm{~h} . \mathrm{NH}_{4} \mathrm{Cl}(109 \mathrm{mg}, 2.0 \mathrm{mmol})$ was added to the mixture and NH_{3} was evaporated off. Water $\left(20 \mathrm{~cm}^{3}\right)$ was

[^0]added to the residue, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The ethereal extract was dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure to give 5-methylsulfanyl-1-phenylpentan-1-one $4(236 \mathrm{mg}, 57 \%)$ as an oil, bp $100^{\circ} \mathrm{C}(2 \mathrm{mmHg})$ (Found: $\mathrm{C}, 69.1 ; \mathrm{H}, 7.8 . \mathrm{C}_{12} \mathrm{H}_{16}$ OS requires C, 69.2; $\left.\mathrm{H}, 7.7 \%\right)$; $v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 2949,2915$ and $1680 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.70$ $(2 \mathrm{H}, \mathrm{m}), 1.86(2 \mathrm{H}, \mathrm{m}), 2.10(3 \mathrm{H}, \mathrm{s}), 2.55(2 \mathrm{H}, \mathrm{t}, J 7.3), 3.00$ ($2 \mathrm{H}, \mathrm{t}, J 7.3$), $7.46(2 \mathrm{H}, \mathrm{m}), 7.56(1 \mathrm{H}, \mathrm{m})$ and $7.95(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 15.5,23.4,28.7,34.0,38.0,128.0$ (2 C), $128.6(2 \mathrm{C}), 133.0,137.0$ and 199.9; $m / z 210\left(\mathrm{M}^{+}+2\right.$, $2 \%), 209\left(\mathrm{M}^{+}+1,8\right), 208\left(\mathrm{M}^{+}, 23\right), 161(64), 105(100), 77(76)$ and 61 (20).
(B). The same reaction was carried out under N_{2} and worked up to give 1,3,4,5,6,11a-hexahydro-7E-2-benzothionine 5 (499 $\mathrm{mg}, 62 \%$), a non-distillable oil; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ $1.60-1.78(4 \mathrm{H}, \mathrm{m}), 1.91(1 \mathrm{H}, \mathrm{dd}, J 10.7$ and 14.2), 1.98-2.09 $(1 \mathrm{H}, \mathrm{m}), 2.36-2.69(4 \mathrm{H}, \mathrm{m}), 2.88(1 \mathrm{H}, \mathrm{dd}, J 4.3$ and 14.2), 5.72 $(1 \mathrm{H}, \mathrm{m}), 5.95(1 \mathrm{H}, \mathrm{m}), 6.11(2 \mathrm{H}, \mathrm{m})$ and $6.49(1 \mathrm{H}, \mathrm{d}, J 9.6)$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 25.8,26.1,27.2,35.2,40.8,47.1$, 121.8, 123.05, 123.8, 130.2 and 132.9 (2 C); $\lambda_{\max }(\mathrm{MeCN}) / \mathrm{nm}$ 315 ($\log \varepsilon \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 3.9$).

trans-2-Phenyl-1-[(trimethylsilyl)methyl]tetrahydrothiopyranium

 perchlorate (trans-7)(Trimethylsilyl)methyl triflate ($7.10 \mathrm{~g}, 30.0 \mathrm{mmol}$) was added to a solution of compound $\mathbf{6}(3.62 \mathrm{~g}, 20.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 cm^{3}) at rt . The mixture was stirred for 3 h and concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(10 \mathrm{~cm}^{3}\right)$ and the solution was stirred with aq. $\mathrm{NaClO}_{4}(7.93 \mathrm{~g}$, 64.7 mmol in $40 \mathrm{~cm}^{3}$) overnight. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure, and the residue was recrystallized from ethyl acetate to give the title salt trans-7 ($6.34 \mathrm{~g}, 86 \%$), mp 121$122{ }^{\circ} \mathrm{C}$ (Found: C, 49.1; H, 6.9. $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{ClO}_{4} \mathrm{SSi}$ requires C, 49.4; $\mathrm{H}, 6.9 \%)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2946,1445,1256,1088$ and 851 ; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 0.13(9 \mathrm{H}, \mathrm{s}), 1.93(1 \mathrm{H}, \mathrm{AB}-\mathrm{q}$, $J 13.9), 2.05-2.25(4 \mathrm{H}, \mathrm{m}), 2.43(2 \mathrm{H}, \mathrm{d}, J 14.8), 3.01(1 \mathrm{H}$, AB-q, $J 13.9$), $3.50(1 \mathrm{H}, \mathrm{m}), 3.82(1 \mathrm{H}, \mathrm{m}), 4.95(1 \mathrm{H}, \mathrm{dd}, J 3.0$ and 11.9) and 7.43-7.49 ($5 \mathrm{H}, \mathrm{m}$).

Reaction of the salt trans-7 with CsF

(Entries 1 and 2 in Table 1). $\operatorname{CsF}(0.62 \mathrm{~g}, 4.1 \mathrm{mmol})$ was added to a solution of the salt trans-7 $(0.73 \mathrm{~g}, 2.0 \mathrm{mmol})$ in DME $\left(10 \mathrm{~cm}^{3}\right)$ under N_{2} and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 or 24 h . The mixture was poured into water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The ethereal extract was dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure to give a mixture of products $\mathbf{4 , 5 , 6}$ and (E)-5-methylsulfanyl-1-phenylpent-1-ene $\mathbf{1 1}$ (after 3 h , total 204 $\mathrm{mg}, 54 \%$, proportions $0: 75: 21: 4$; after 24 h , total yield 139 mg , 37%, proportions $2: 55: 29: 14$). Isolation of each compound was difficult due to insufficient separation on silica gel columns. The product proportions were determined by integration of the ${ }^{1} \mathrm{H}$ signals at 400 MHz in the NMR spectra of the mixture.
Compound 11: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.74-1.80(2 \mathrm{H}$, $\mathrm{m}), 2.10(3 \mathrm{H}, \mathrm{s}), 2.29-2.34(2 \mathrm{H}, \mathrm{m}), 2.53(2 \mathrm{H}, \mathrm{t}, J 7.3), 6.19$ $(1 \mathrm{H}, \mathrm{dt}, J 15.8$ and 7.3$), 6.40(1 \mathrm{H}, \mathrm{d}, J 15.8)$ and $7.17-7.35$ $(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 15.5,28.7,32.0$, 33.7, 126.0 (2 C), 127.0, 128.5 (2 C), 129.7, 130.6 and 137.6; m / z (GC-EI) $192.0961\left(\mathrm{M}^{+} . \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~S}\right.$ requires M, 192.0973), 194 $\left(\mathrm{M}^{+}+2,3 \%\right), 193\left(\mathrm{M}^{+}+1,9\right), 192\left(\mathrm{M}^{+}, 62\right), 144(52), 129$ (100), 115 (35) and 91 (28).
(Entry 3). The same reaction was carried out at rt for 24 h to give a mixture of products $\mathbf{4 , 5 , 6 , 1 1}$ and $\mathbf{1 2}$ (total yield 246 mg , 45%, proportions 2:38:15:43:2).
(Entry 4). The same reaction was carried out at $70^{\circ} \mathrm{C}$ for 24 h and the product worked up to give compound $11(328 \mathrm{mg}$, $85 \%)$.
(Entries 5 and 6). CsF ($0.62 \mathrm{~g}, 4.1 \mathrm{mmol}$) was added to a solution of the salt trans-7 ($0.73 \mathrm{~g}, 2.0 \mathrm{mmol}$) and DBU $(0.61 \mathrm{~g}$,
$4.0 \mathrm{mmol})$ in DME $\left(10 \mathrm{~cm}^{3}\right)$ at 0 or $25^{\circ} \mathrm{C}$ and the mixture was stirred for 24 h and worked up to give a mixture of products 4 , 5, 6, 11 and 12 (at $0^{\circ} \mathrm{C}$, total yield $157 \mathrm{mg}, 41 \%$, proportions 6:59:13:13:9; at $25^{\circ} \mathrm{C}$, total yield $348 \mathrm{mg}, 93 \%$, proportions 0:9:38:37:16).
(Entry 7). The same mixture of salt trans-7 and CsF in DME described for entries 1 and 2 was stirred in dry air at rt for 3 h and worked up to give a complex mixture which was difficult to separate.
(Entry 8). The same mixture of salt trans-7, CsF and DBU described for entry 6 was stirred in air for 3 h and worked up to give a mixture of compounds $\mathbf{4 , 5 , 6 , 1 1}$ and $\mathbf{1 2}$ (total yield 203 $\mathrm{mg}, 54 \%$, proportions $4: 20: 34: 36: 6$).
(Entries 9 and 10). CsF ($0.62 \mathrm{~g}, 4.1 \mathrm{mmol}$) was added to a solution of salt trans-7 $(0.73 \mathrm{~g}, 2.0 \mathrm{mmol})$ in DMSO $\left(10 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at rt for 3 or 24 h under N_{2} and was then worked up to give a mixture of compounds $\mathbf{4 , 5 , 5 , 1 1}$ and 12 (after 3 h , total yield $256 \mathrm{mg}, 67 \%$, proportions 0:67:0:28:5; after 24 h , total yield $199 \mathrm{mg}, 47 \%$, proportions 11:17:15:38:19).
(Entry 11). CsF ($0.62 \mathrm{~g}, 4.1 \mathrm{mmol}$) was added to a solution of salt trans $-7(0.73 \mathrm{~g}, 2.0 \mathrm{mmol})$ and $\mathrm{DBU}(0.61 \mathrm{~g}, 4.0 \mathrm{mmol})$ in DMSO ($10 \mathrm{~cm}^{3}$) at rt under N_{2} and the mixture was stirred for 24 h and then worked up to give a mixture of compounds $\mathbf{4}, \mathbf{6}$, 11 and 12 (total yield $290 \mathrm{mg}, 77 \%$, proportions $1: 24: 25: 50$).

Change of bicycle 5 in DME

(Entry 1 in Table 2). A solution of compound 5 (132 mg, $0.686 \mathrm{mmol})$ in DME $\left(5 \mathrm{~cm}^{3}\right)$ was stirred at rt under N_{2} for 20 h . The mixture was poured into water $\left(40 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to recover starting material 5 ($112 \mathrm{mg}, 85 \%$).
(Entries 2 and 3). To a solution of compound 5 ($269 \mathrm{mg}, 1.40$ $\mathrm{mmol})$ in DME $\left(5 \mathrm{~cm}^{3}\right)$ was added DBU ($426 \mathrm{mg}, 2.80 \mathrm{mmol}$) under N_{2} and the mixture was stirred at rt for 20 or 72 h and then worked up in a manner similar to that described above to give a mixture of starting material 5 and isomer 12 (total 250 $\mathrm{mg}, 93 \%$, ratio $35: 65$) after 20 h , and to give almost pure isomer 12 ($257 \mathrm{mg}, 96 \%$) after 72 h .

Compound 12: bp $115-120^{\circ} \mathrm{C}(1.3 \mathrm{mmHg}), \mathrm{mp} 50-51^{\circ} \mathrm{C}$ (Found: C, 74.8; H, 8.5. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~S}$ requires $\mathrm{C}, 74.9 ; \mathrm{H}, 8.4 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2922,1443$ and $754 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 1.35-1.42(2 \mathrm{H}, \mathrm{m}), 1.62-1.68(2 \mathrm{H}, \mathrm{m}), 1.76-1.82(2 \mathrm{H}$, $\mathrm{m}), 2.70-2.75(4 \mathrm{H}, \mathrm{m}), 3.80(2 \mathrm{H}, \mathrm{s})$ and 7.12-7.22 (4 H, m); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 21.5,30.9,31.7,32.6,33.6,36.8$, $126.5,127.2,129.5,129.7,139.5$ and $140.9 ; m / z 194\left(\mathrm{M}^{+}+2\right.$, $6 \%), 193\left(\mathrm{M}^{+}+1,14\right), 192\left(\mathrm{M}^{+}, 100\right), 143(43), 131(31), 115$ (32), 104 (45) and 87 (91).
(Entry 4). A solution of compound $5(266 \mathrm{mg}, 1.383 \mathrm{mmol})$ in DMSO ($5 \mathrm{~cm}^{3}$) was stirred at rt under N_{2} for 20 h . The mixture was treated in a manner similar to that described above to give a mixture of starting material 5 and isomer 12 (total 222 $\mathrm{mg}, 83 \%$, ratio $44: 56$).

Change of bicycle 5 in a $\mathrm{KOH}-\mathrm{EtOH}$ solution

(Entry 5 in Table 2). To a solution of $10 \% \mathrm{KOH}$ in EtOH (10 cm^{3}) was added bicycle $5(0.499 \mathrm{~g}, 2.59 \mathrm{mmol})$, and the mixture was stirred at rt for 24 h . The mixture was mixed with water (50 cm^{3}), extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give a mixture of compounds 6,11 and $\mathbf{1 2}$ (total yield $375 \mathrm{mg}, 77 \%$, proportions $30: 51: 19$). The product proportion were determined by integration of the ${ }^{1} \mathrm{H}$ signals at 500 MHz in the NMR spectra.

Reaction of bicycle 5 with benzaldehyde

A solution of compound $5(328 \mathrm{mg}, 1.71 \mathrm{mmol})$ and benzaldehyde ($181 \mathrm{mg}, 1.71 \mathrm{mmol}$) in DME $\left(5 \mathrm{~cm}^{3}\right)$ was stirred at rt for 20 h under N_{2}. The mixture was mixed with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give a mixture of starting material 5 , isomer 6 and phenyloxirane $\mathbf{1 4}$ (total $368 \mathrm{mg}, 50.78 \mathrm{mmol}, 60.84 \mathrm{mmol}, 140.81$ mmol). The structure of compound $\mathbf{1 4}$ was confirmed by comparison with an authentic sample by GLC-MS and ${ }^{1} \mathrm{H}$ NMR spectra. Mole ratios of the products were determined by integration of the ${ }^{1} \mathrm{H}$ signals at 500 MHz .

Computational methods

Starting geometries for the calculations were obtained with MOL-MOLIS (Daikin Industries, Ltd., Shinjiku-ku, Tokyo, Japan). Calculations for salt 7 were performed at the restricted Hartree-Fock (RHF) level with the AM1 method ${ }^{10}$ in the MOPAC 93 program. ${ }^{11}$ Geometries were optimized with the Eigenvector Following routine. Calculations for ylides 8 and 9 were carried out using the GAUSSIAN 94 package. ${ }^{12}$ Geometries for ylides $\mathbf{8}$ and 9 were initially optimized at the $\mathrm{HF} / 3-21 \mathrm{G}^{*}$ level. ${ }^{13}$ Finally, further geometry optimizations were performed using the Becke3LYP/6-31G* level. ${ }^{8}$

References

1 M. Hesse, Ring Enlargement in Organic Chemistry, VCH, New York, 1991, p. 83; R. Brückner, Comprehensive Orgainc Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 6, p. 873 .

2 D. Lednicer and C. R. Hauser, J. Am. Chem. Soc., 1957, 79, 4449.
3 E. Vedejs and F. G. West, Chem. Rev., 1986, 86, 941; Y. Sato and N. Shirai, Yakugaku Zasshi, 1994, 114, 880.

4 T. Tanzawa, M. Ichioka, N. Shirai and Y. Sato, J. Chem. Soc., Perkin Trans. 1, 1995, 431; T. Tanzawa, N. Shirai, Y. Sato, K. Hatano and Y. Kurono, J. Chem. Soc., Perkin Trans. 1, 1995, 2845; T. Kitano, N. Shirai and Y. Sato, J. Chem. Soc., Perkin Trans. 1, 1997, 715.

5 Y. Sato, N. Shirai, Y. Machida, E. Ito, T. Yasui, Y. Kurono and K. Hatano, J. Org. Chem., 1992, 57, 6711.

6 B. M. Trost and L. S. Melvin, Jr, Sulfur Ylides, Academic Press, New York, 1975, p. 51.
7 C. L. Bumgardner, H. Hsu, F. Afghahi, W. L. Robert and S. T. Purrington, J. Org. Chem., 1979, 44, 2348.
8 (a) A. D. Becke, Phys. Rev. A, 1988, 38, 3098; (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. A, 1988, 37, 785.
9 D. L. Tuleen and R. H. Bennet, J. Heterocycl. Chem., 1969, 6, 115.
10 AM1: M. J. S. Dewar, E. G. Zoebish, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902.

11 MOPAC 93 ver. 2: J. J. P. Stewart, JCPE P081, JCPE Newsletter, 1995, 6, 76.
12 Revision D.4, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanyakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1995.
13 B. G. Johnson, P. M. W. Gill and J. A. Pople, J. Chem. Phys., (a) 1992, 97, 7846; (b) 1993, 98, 5612; (c) P. M. W. Gill, B. G. Johnson, J. A. Pople and M. J. Frisch, Chem. Phys. Lett., 1992, 197, 499.

Paper 8/02309C
Received 24th March 1998
Accepted 12th May 1998

[^0]: $\dagger 1 \mathrm{cal}=4.184 \mathrm{~J}$.

